首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1612篇
  免费   254篇
  国内免费   399篇
测绘学   21篇
大气科学   82篇
地球物理   176篇
地质学   323篇
海洋学   1283篇
天文学   1篇
综合类   140篇
自然地理   239篇
  2024年   1篇
  2023年   20篇
  2022年   42篇
  2021年   41篇
  2020年   58篇
  2019年   47篇
  2018年   36篇
  2017年   43篇
  2016年   55篇
  2015年   58篇
  2014年   76篇
  2013年   80篇
  2012年   71篇
  2011年   124篇
  2010年   102篇
  2009年   137篇
  2008年   159篇
  2007年   137篇
  2006年   120篇
  2005年   106篇
  2004年   119篇
  2003年   88篇
  2002年   75篇
  2001年   61篇
  2000年   69篇
  1999年   47篇
  1998年   37篇
  1997年   37篇
  1996年   26篇
  1995年   26篇
  1994年   47篇
  1993年   33篇
  1992年   26篇
  1991年   21篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
排序方式: 共有2265条查询结果,搜索用时 46 毫秒
91.
黄河三角洲河口段海岸线动态及演变预测   总被引:3,自引:0,他引:3  
黄河淤积造陆形成黄河三角洲,黄河三角洲地区表层均为第四系全新统松散沉积物,以细颗粒的粉砂为主,呈松散—稍密状态,孔隙度较高,稳定性较差,极易受到海洋动力侵蚀造成海岸蚀退。随着黄河断流天数逐年增多,使黄河来水来砂量逐年递减,在黄河淤积和海洋动力交互或共同影响下,现代黄河三角洲海岸线迅速地发生着淤进蚀退交替的演变。自1976年黄河人工改道走清水沟流路以来,黄河三角洲河口段海岸线总体处于淤进状态。对河口地区1986—2004年间遥感图像进行比较分析,发现有关岸线位置的原始数据间存在近似的二元一次线性相关关系,通过建立回归模型,对2005—2010年河口地区海岸线形态进行了演变预测。预测结果表明,2005—2010年间黄河三角洲原河口沙嘴前端处于蚀退状态,而北汊1流路附近有一直淤进扩张的趋势。  相似文献   
92.
2002~2005年在长江中下游的洪湖、固城湖和太湖分别采集了沉积物柱样钻孔,测定了总有机碳(TOC)和金属元素包括Pb,Al,Fe,Ti等,并采用210Pb和137Cs进行了近代沉积物定年。研究结果表明,洪湖钻孔平均沉积速率为0.15cm/a,固城湖平均沉积速率在0.067cm/a,太湖平均沉积速率为0.35~0.41cm/a。根据湖泊沉积物中铅元素与参考元素(Al,Fe和Ti)浓度和TOC的相关关系建立了回归方程,线性关系极显著(p<0.001)。根据回归方程获取了钻孔中铅的背景值变化,研究表明近代沉积物中金属铅不仅仅来源于自然的作用,而人类活动导致铅的累积发生时间都在20世纪70年代,从一个侧面也说明利用沉积物铅含量变化进行断代存在可能性。对太湖钻孔而言,其污染程度要高于洪湖和固城湖。研究结果表明近30年来洪湖和固城湖人为造成湖泊沉积物铅累积量在不断增加,其沉积物铅污染有进一步加重的趋势,应受到科学家和管理部门的关注。  相似文献   
93.
In an annual cycle from March 2005 to February 2006, benthic nutrient fluxes were measured monthly in the Dongtan intertidal flat within the Changjiang (Yangtze River) Estuary. Except for NH4^+, there always showed high fluxes from overlying water into sediment for other four nutrients. Sediments in the high and middle marshes, covered with halophyte and consisting of macrofauna, demonstrated more capabilities of assimilating nutrients from overlying water than the low marsh. Sampling seasons and nutrient concentrations in the overlying water could both exert significant effects on these fluxes. Additionally, according to the model provided by previous study, denitrification rates, that utilizing NO3- transported from overlying water (Dw) in Dongtan sediments, were estimated to be from -16 to 193 μmol·h^-1·m^-2 with an average value of 63 μmol·h^-1·m^-2 (n=18). These estimated values are still underestimates of the in-situ rates owing to the lack of consideration of DN, i.e., denitrification supported by the local NO3^- production via nitrification.  相似文献   
94.
We conducted ship-board incubation experiments to investigate changes in nutrient uptake of phytoplankton under different phosphate concentrations and irradiances in the Changjiang River Estuary and its adjacent waters in China. Under 100% natural irradiance the uptake rates of phosphate, silicate, and nitrate were accelerated at high phosphate levels (1.84 μM), while under low irradiance (about 50% natural irradiance) their uptake rates were restrained at the high but stimulated greatly at the intermediate phosphate concentrations (1.26 μM), as the growth of phytoplankton, changes in nitrite and ammonium uptake didn't follow an obvious pattern. Our results also showed that there were linear relationships between nitrate, silicate and phosphate uptake at different phosphate concentrations under low and high irradiances, and the growth period of phytoplankton was prolonged both at the high phosphate concentrations under high irradiance and at the intermediate concentrations under low irradiance, suggesting that the limitation of phytoplankton growth mainly reflected changes in its growth period, and because no such environment (low irradiance and low phosphate concentrations) actually existed in a high turbidity zone, phytoplankton blooms hardly occurred there. In the absence of irradiance, denitrification occurred readily and phytoplankton was kept decreasing, which resulted in phosphate regeneration.  相似文献   
95.
In northern Jiangsu coastal zone area, Guanhe River is the biggest river and has the best navigation conditions among rivers which flow into the Yellow Sea. The grain sizes show gradual increase from the high intertidal zone to lower intertidal zone. The heavy metal values have slight changes along both sides of the river mouth, but show an evident change perpendicular to the tidal flat. In the latter case, they show a good correlation with grain size fluctuation, that is, the heavy metal values gradually decline when the grain size increases from the high intertidal zone to the lower intra-tidal zone. Analyses of the heavy metal elements show that on the Guanhe estuary surface sediment, the content of the elements Hg, As and Cu is above background values; Pb and Zn contents are rather close to the background values; and Cd content is less than the background values. The element Hg comes out to be harmful in a medium level to ecological environment, while the elements of Cr, As, Cu, Pb, Zn and Cd fall in a safe range of MPL. On the whole, Guanhe estuary tidal flat is not very harmful to the ecology in terms of the heavy metals. __________ Translated from Marine Geology & Quaternary Geology, 2007, 27(5): 23–32 [译自: 海洋地质与第四纪地质]  相似文献   
96.
The densities of 36 water samples from the Huanghe River estuary and Bohai Bay were determinedby a magnetic float densimcter under three temperatures from 15℃ to 25℃.All the measured densities ofsamples were greater than that of the values calculated from the International Equation of State of Seawater.The differences between the measured and calculated densities increased with the decrease of salinities.The dif-ferences appeared exponentially correlated with[Ca~(2+)]/s,[Mg~(2+)]/s and[SO_4~(2-)]/s,and had"s"type curverelationship with the alkalinity in all salinity range.But in the salinity ranging from 25.72 to 31.57,therelationships were all linear.The density difference can be estimated from the equation △ρ(10~3kg·m~(-3))=(-2.79+236.5([Ca~(2+)]/s)/(-9.7464×10~(-3)+[Ca~(2+)]/s).It was the high alkalinity and[Ca~(2+)]/s that resulted in the measured densi-ties of seawaters being higher than the calculated densities in the Huanghe estuary and Bohai Bay.  相似文献   
97.
This article evaluates whether a sediment budget for the South River, Maryland, can be coupled with metals data from sediment cores to identify and quantify sources of historic metal inputs to marsh and subtidal sediments along the estuary. Metal inputs to estuarine marsh sediments come from fluvial runoff and atmospheric deposition. Metal inputs to subtidal sediments come from atmospheric deposition, fluvial runoff, coastal erosion, and estuarine waters. The metals budget for the estuary indicates that metal inputs from coastal erosion have remained relatively constant since 1840. Historical variations in metal contents of marsh sediments have probably resulted primarily from increasing atmospheric deposition in this century, but prior to 1900 may reflect changing fluvial sources, atmospheric inputs, or factors not quantified by the budget. Residual Pb, Cu, and Zn in the marsh sediments not accounted for by fluvial inputs was low to moderate in 1840, decreased to near zero circa 1910, and by 1987 had increased to levels that were one to ten times greater than those of 1840. Sources of variability in subtidal cores could not be clearly discerned because of geochemical fluxes, turbulent mixing, and bioturbation within the cores. The sediment-metal budgeting approach appears to be a viable method for delineating metal sources in small, relatively simple estuarine systems like the South River and in systems where recent deposition (for example, prograding marshes) prevents use of deep core analysis to identify background levels of metal. In larger systems or systems with more variable sources of sediment and metal input, however, assumptions and measurement errors in the metal budgeting approach suggest that deep core analysis and normalization techniques are probably preferable for identifying anthropogenic impacts.Field and laboratory research conducted at the Department of Geography, University of Maryland, College Park, Maryland, 20742, USAField and laboratory research conducted at the Marine and Estuarine Environmental Science Program, University of Maryland, College Park, Maryland, 20742, USA  相似文献   
98.
In the East China Sea (ECS), there are some mud areas, including the south coastal mud area, the north coastal mud area, and the mud area to the southwest of Cheju Island. X-ray fluorescence (XRF) techniques and Thermal Ionization Mass Spectrometry (TIMS) were used to study the high-resolution sedimentary record of Pb concentrations and Pb stable isotopic compositions in the past one hundred and fifty years in the coastal mud of the ECS. Pb concentrations of a ^210Pb dating S5 core in the study area have increased rapidly since 1980, and reached the maximal value with 65.08 μg/g in 2000, corresponding to the fast economic development of China since the implementation of the "Reform and Open Policy" in 1978; ^206Pb/^207Pb ratios generally had stabilized at 1.195 from 1860 to 1966, and decreased gradually from 1966 to 2000, indicating that the anthropogenic source Pb contribution to the ECS has increased gradually since 1966, especially since 1980. Pb concentrations decreased distinctly from 2000 to 2003 and ^206Pb/^207Pb ratios increased from 2001 to 2003, corresponding closely to the ban of lead gasoline from 2000 in China. From 1950 to 2003, there occurred four distinct decrease events of ^206Pb/^207Pb, possibly responding to the Changjiang River (Yangtze River) catastrophic floods in 1998, 1991, 1981 and 1954; from 1860 to 1966, there were two decrease periods of ^206Pb/^207Pb, which may respond to the catastrophic floods of Changjiang River in 1931 and 1935, and 1870. As a result of the erosion and drowning by the catastrophic floods, the anthropogenic lead accumulated in soil and water environments over a long period of time was brought into the Changjiang River, then part of them was finally transported into the ECS, which leads to changes in Pb stable isotopic composition.  相似文献   
99.
100.
Dissolved organic matter (DOM) is an important chemical component in natural water. Chromophoric dissolved organic matter (CDOM), a fraction of optical properties, plays art important role in the biogeochemical cycle of nutrients in aquatic environment. People realized that DOM cycle is crucial in the global carbon and nitrogen flux, and also is inherently related to nutrients and trace metal elements. Therefore, CDOM was concerned by scientists in global oceanography and limnology fields. Water samples were collected from three sections (North Channel, South Channel and Zhuyuan) of the Yangtze (Changjiang River) estuary in March 2006 Three-dimensional excitation emission matrix (3-DEEM) fluorescence spectra were analyzed for those filtrates through Whatman GF/F filters. Dissolved organic carbon (DOC) was also measured by TOC analyzer. The tidal variety was also taken into account. The 3-D EEM fluorescence scans suggested the fluorescence characteristics of humic acid (Ex=332-344 nm, Em=439-451 nm) and fulvic acid (Ex=250-254 nm, Em=472-478 nm) were obvious, and the fluorescence group of protein-like and tyrosine (Ex=230 nm, Em=283 nm) was also found. They are mainly composed of CDOM in the Yangtze estuary. Further data analysis, especially the fluorescence index (f 450/500), showed that terrestrial signal was rather strong (1.41-1.65) in the surface water, however, some terrestrial CDOM signals of bottom water showed excursions (1.28-1.39). On the other hand, anthropogenic sign was impressed in the waters of Zhuyuan, which is one of the main drain outlets of Shanghai Metropolis. DOC concentrations ranged from 2.2 mg/L to 3.4 mg/L in Zhuyuan and South Channel, and from 2.0 mg/L to 2.4 mg/L in North Channel. The tide effect played a role in the composition of the CDOM measured by 3-D fluorescence scan technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号